Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 54(10): e10669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34287576

RESUMO

Mechanisms involved in cardiac function and calcium (Ca2+) handling in obese-resistant (OR) rats are still poorly determined. We tested the hypothesis that unsaturated high-fat diet (HFD) promotes myocardial dysfunction in OR rats, which it is related to Ca2+ handling. In addition, we questioned whether exercise training (ET) becomes a therapeutic strategy. Male Wistar rats (n=80) were randomized to standard or HFD diets for 20 weeks. The rats were redistributed for the absence or presence of ET and OR: control (C; n=12), control + ET (CET; n=14), obese-resistant (OR; n=9), and obese-resistant + ET (ORET; n=10). Trained rats were subjected to aerobic training protocol with progressive intensity (55-70% of the maximum running speed) and duration (15 to 60 min/day) for 12 weeks. Nutritional, metabolic, and cardiovascular parameters were determined. Cardiac function and Ca2+ handling tests were performed in isolated left ventricle (LV) papillary muscle. OR rats showed cardiac atrophy with reduced collagen levels, but there was myocardial dysfunction. ET was efficient in improving most parameters of body composition. However, the mechanical properties and Ca2+ handling from isolated papillary muscle were similar among groups. Aerobic ET does not promote morphological and cardiac functional adaptation under the condition of OR.


Assuntos
Obesidade , Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Coração , Masculino , Ratos , Ratos Wistar
2.
Braz. j. med. biol. res ; 54(10): e10669, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285654

RESUMO

Mechanisms involved in cardiac function and calcium (Ca2+) handling in obese-resistant (OR) rats are still poorly determined. We tested the hypothesis that unsaturated high-fat diet (HFD) promotes myocardial dysfunction in OR rats, which it is related to Ca2+ handling. In addition, we questioned whether exercise training (ET) becomes a therapeutic strategy. Male Wistar rats (n=80) were randomized to standard or HFD diets for 20 weeks. The rats were redistributed for the absence or presence of ET and OR: control (C; n=12), control + ET (CET; n=14), obese-resistant (OR; n=9), and obese-resistant + ET (ORET; n=10). Trained rats were subjected to aerobic training protocol with progressive intensity (55-70% of the maximum running speed) and duration (15 to 60 min/day) for 12 weeks. Nutritional, metabolic, and cardiovascular parameters were determined. Cardiac function and Ca2+ handling tests were performed in isolated left ventricle (LV) papillary muscle. OR rats showed cardiac atrophy with reduced collagen levels, but there was myocardial dysfunction. ET was efficient in improving most parameters of body composition. However, the mechanical properties and Ca2+ handling from isolated papillary muscle were similar among groups. Aerobic ET does not promote morphological and cardiac functional adaptation under the condition of OR.


Assuntos
Animais , Masculino , Ratos , Condicionamento Físico Animal , Obesidade , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Coração
3.
Braz J Med Biol Res ; 53(3): e8761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32159612

RESUMO

Nitric oxide (NO) inhibition by high-dose NG-nitro-L-arginine methyl ester (L-NAME) is associated with several detrimental effects on the cardiovascular system. However, low-dose L-NAME increases NO synthesis, which in turn induces physiological cardiovascular benefits, probably by activating a protective negative feedback mechanism. Aerobic exercise, likewise, improves several cardiovascular functions in healthy hearts, but its effects are not known when chronically associated with low-dose L-NAME. Thus, we tested whether the association between low-dose L-NAME administration and chronic aerobic exercise promotes beneficial effects to the cardiovascular system, evaluating the cardiac remodeling process. Male Wistar rats were randomly assigned to control (C), L-NAME (L), chronic aerobic exercise (Ex), and chronic aerobic exercise associated to L-NAME (ExL). Aerobic training was performed with progressive intensity for 12 weeks; L-NAME (1.5 mg·kg-1·day-1) was administered by orogastric gavage. Low-dose L-NAME alone did not change systolic blood pressure (SBP), but ExL significantly increased SBP at week 8 with normalization after 12 weeks. Furthermore, ExL promoted the elevation of left ventricle (LV) end-diastolic pressure without the presence of cardiac hypertrophy and fibrosis. Time to 50% shortening and relaxation were reduced in ExL, suggesting a cardiomyocyte contractile improvement. In addition, the time to 50% Ca2+ peak was increased without alterations in Ca2+ amplitude and time to 50% Ca2+ decay. In conclusion, the association of chronic aerobic exercise and low-dose L-NAME prevented cardiac pathological remodeling and induced cardiomyocyte contractile function improvement; however, it did not alter myocyte affinity and sensitivity to intracellular Ca2+ handling.


Assuntos
Cálcio/análise , Inibidores Enzimáticos/farmacologia , Contração Miocárdica/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Adiposidade , Animais , Peso Corporal/fisiologia , Inibidores Enzimáticos/administração & dosagem , Hemodinâmica , Masculino , Modelos Animais , Atividade Motora/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico Sintase/metabolismo , Ratos Wistar , Pressão Ventricular/efeitos dos fármacos
4.
Braz. j. med. biol. res ; 53(3): e8761, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1089339

RESUMO

Nitric oxide (NO) inhibition by high-dose NG-nitro-L-arginine methyl ester (L-NAME) is associated with several detrimental effects on the cardiovascular system. However, low-dose L-NAME increases NO synthesis, which in turn induces physiological cardiovascular benefits, probably by activating a protective negative feedback mechanism. Aerobic exercise, likewise, improves several cardiovascular functions in healthy hearts, but its effects are not known when chronically associated with low-dose L-NAME. Thus, we tested whether the association between low-dose L-NAME administration and chronic aerobic exercise promotes beneficial effects to the cardiovascular system, evaluating the cardiac remodeling process. Male Wistar rats were randomly assigned to control (C), L-NAME (L), chronic aerobic exercise (Ex), and chronic aerobic exercise associated to L-NAME (ExL). Aerobic training was performed with progressive intensity for 12 weeks; L-NAME (1.5 mg·kg-1·day-1) was administered by orogastric gavage. Low-dose L-NAME alone did not change systolic blood pressure (SBP), but ExL significantly increased SBP at week 8 with normalization after 12 weeks. Furthermore, ExL promoted the elevation of left ventricle (LV) end-diastolic pressure without the presence of cardiac hypertrophy and fibrosis. Time to 50% shortening and relaxation were reduced in ExL, suggesting a cardiomyocyte contractile improvement. In addition, the time to 50% Ca2+ peak was increased without alterations in Ca2+ amplitude and time to 50% Ca2+ decay. In conclusion, the association of chronic aerobic exercise and low-dose L-NAME prevented cardiac pathological remodeling and induced cardiomyocyte contractile function improvement; however, it did not alter myocyte affinity and sensitivity to intracellular Ca2+ handling.


Assuntos
Animais , Masculino , Condicionamento Físico Animal/fisiologia , Cálcio/análise , Óxido Nítrico Sintase/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Inibidores Enzimáticos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Peso Corporal/fisiologia , Ratos Wistar , Pressão Ventricular/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , NG-Nitroarginina Metil Éster/administração & dosagem , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Inibidores Enzimáticos/administração & dosagem , Adiposidade , Hemodinâmica , Atividade Motora/fisiologia , Miocárdio/patologia
5.
Braz J Med Biol Res ; 49(4): e5028, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909787

RESUMO

In experimental studies, several parameters, such as body weight, body mass index, adiposity index, and dual-energy X-ray absorptiometry, have commonly been used to demonstrate increased adiposity and investigate the mechanisms underlying obesity and sedentary lifestyles. However, these investigations have not classified the degree of adiposity nor defined adiposity categories for rats, such as normal, overweight, and obese. The aim of the study was to characterize the degree of adiposity in rats fed a high-fat diet using cluster analysis and to create adiposity intervals in an experimental model of obesity. Thirty-day-old male Wistar rats were fed a normal (n=41) or a high-fat (n=43) diet for 15 weeks. Obesity was defined based on the adiposity index; and the degree of adiposity was evaluated using cluster analysis. Cluster analysis allowed the rats to be classified into two groups (overweight and obese). The obese group displayed significantly higher total body fat and a higher adiposity index compared with those of the overweight group. No differences in systolic blood pressure or nonesterified fatty acid, glucose, total cholesterol, or triglyceride levels were observed between the obese and overweight groups. The adiposity index of the obese group was positively correlated with final body weight, total body fat, and leptin levels. Despite the classification of sedentary rats into overweight and obese groups, it was not possible to identify differences in the comorbidities between the two groups.


Assuntos
Adiposidade/fisiologia , Modelos Animais de Doenças , Obesidade/classificação , Comportamento Sedentário , Animais , Glicemia/análise , Pressão Sanguínea , Peso Corporal , Colesterol/sangue , Análise por Conglomerados , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Leptina/sangue , Masculino , Ratos Wistar , Índice de Gravidade de Doença , Fatores de Tempo , Triglicerídeos/sangue
6.
Braz. j. med. biol. res ; 49(4): e5028, 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-774525

RESUMO

In experimental studies, several parameters, such as body weight, body mass index, adiposity index, and dual-energy X-ray absorptiometry, have commonly been used to demonstrate increased adiposity and investigate the mechanisms underlying obesity and sedentary lifestyles. However, these investigations have not classified the degree of adiposity nor defined adiposity categories for rats, such as normal, overweight, and obese. The aim of the study was to characterize the degree of adiposity in rats fed a high-fat diet using cluster analysis and to create adiposity intervals in an experimental model of obesity. Thirty-day-old male Wistar rats were fed a normal (n=41) or a high-fat (n=43) diet for 15 weeks. Obesity was defined based on the adiposity index; and the degree of adiposity was evaluated using cluster analysis. Cluster analysis allowed the rats to be classified into two groups (overweight and obese). The obese group displayed significantly higher total body fat and a higher adiposity index compared with those of the overweight group. No differences in systolic blood pressure or nonesterified fatty acid, glucose, total cholesterol, or triglyceride levels were observed between the obese and overweight groups. The adiposity index of the obese group was positively correlated with final body weight, total body fat, and leptin levels. Despite the classification of sedentary rats into overweight and obese groups, it was not possible to identify differences in the comorbidities between the two groups.


Assuntos
Animais , Masculino , Adiposidade/fisiologia , Modelos Animais de Doenças , Obesidade/classificação , Comportamento Sedentário , Glicemia/análise , Pressão Sanguínea , Peso Corporal , Colesterol/sangue , Análise por Conglomerados , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Leptina/sangue , Ratos Wistar , Índice de Gravidade de Doença , Fatores de Tempo , Triglicerídeos/sangue
7.
Horm Metab Res ; 43(7): 452-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21557150

RESUMO

Thyroid hormones regulate energy balance and act on adipokines. However, while it is unclear what the effects are of calorie restriction and high doses of triiodothyronine (T(3)) on adipokines in obesity, thyroid hormones are illicitly administered in isolation or in association with a hypocaloric diet as an obesity treatment. The present study determined the effect of T(3) on serum concentrations and gene expression of the adipokines leptin, resistin, and adiponectin in calorie-restricted obese rats. Male Wistar rats received a hypercaloric diet for 20 weeks followed by calorie restriction for 8 weeks. The animals were then randomly divided into 3 groups: calorie restriction (OR), OR with 5 µg of T(3)/100 g BW (RS1), and OR with 25 µg of T(3)/100 g BW (RS2) for 2 weeks. Blood and adipose tissue samples were collected for biochemical, hormonal, and gene expression analyses. Serum concentrations of leptin (OR: 3.7±0.6, RS1: 3.8±1, RS2 0.2±0.07 ng/dl) and resistin (OR: 2.5±0.6, RS1: 2.5±0.5, RS2 1.6±0.3 ng/dl) were diminished at the higher dose, while serum adiponectin (OR: 31±7, RS1: 24±5, RS2 26±7 ng/dl) levels were lower in the low dose group. Administration of T(3) reduced leptin gene expression (OR: 0.91±0.1, RS1: 0.95±0.1, RS2 0.22±0.1) only at the higher dose, resistin expression (OR: 1.06±0.2, RS1: 1.04±0.1, RS2 0.88±0.2) was not influenced by T(3) treatment, and adiponectin expression (OR: 1.55±0.5, RS1: 0.95±0.15, RS2 0.97±0.13) was diminished independent of the T(3) dose. These results indicate that T(3), directly or indirectly, inhibits the expression of leptin and adiponectin in calorie restricted obese animals.


Assuntos
Adiponectina/genética , Restrição Calórica , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/genética , Obesidade/genética , Resistina/genética , Tri-Iodotironina/farmacologia , Adiponectina/sangue , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Relação Dose-Resposta a Droga , Leptina/sangue , Masculino , Obesidade/sangue , Ratos , Ratos Wistar , Resistina/sangue , Tri-Iodotironina/administração & dosagem
8.
Braz J Med Biol Res ; 41(7): 615-20, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18719744

RESUMO

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.


Assuntos
Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio/genética , Miocárdio/metabolismo , Obesidade/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Trocador de Sódio e Cálcio/genética , Animais , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Homeostase , Masculino , Miocárdio/química , Obesidade/genética , RNA Mensageiro , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/química , Sarcolema/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Regulação para Cima
9.
Braz. j. med. biol. res ; 41(7): 615-620, July 2008. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-489520

RESUMO

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.


Assuntos
Animais , Masculino , Ratos , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio/genética , Miocárdio/metabolismo , Obesidade/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Trocador de Sódio e Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Homeostase , Miocárdio/química , Obesidade/genética , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Mensageiro , Sarcolema/química , Sarcolema/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...